$\oint 1.3$ Back to the Path integral

- disturbing the vacuum

Last time:
continuum limit of system of N particles

$$
q(f), a=1, \ldots, N
$$

generalized coordinate
$\xrightarrow{N \rightarrow \infty}$ field theory with field

$$
\varphi(t, \vec{x}), \vec{x} \in \mathbb{R}^{D-1}
$$

When $D-1=2(o r 3)$ there is a nice intuitive picture for this:

point masses m
with position label a and vertical displacement $q_{a}(t) \xrightarrow{N \rightarrow \infty} \varphi(t, \vec{x})$

This picture is very suitable for describing the vacuum?
\rightarrow state where all point masses are on the plane, ie. $q_{a}=o r a$
Disturbing the vacuum:
pushing on the mass labeled by a
\rightarrow add term $J_{a}(t) q_{a}$ to potential
More generally:
add $\sum_{a} \gamma_{a}(t) q_{a} \xrightarrow{N \rightarrow \infty} y(x) \varphi(x)$
"source function"

$$
J(t, \vec{x})
$$

\rightarrow creates wave packets going off here and there modified path integral (take $D=4$):

$$
Z=\int D \varphi e^{i \int d^{4} x\left[\frac{1}{2}(\partial \varphi)^{2}-V(\varphi)+\gamma(x) \varphi(x)\right]}
$$

Let's do free field theory:
$\mathcal{L}(\varphi)=\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right] \quad$ "Gaussian theory"
\rightarrow equation of motion: $\left(\partial^{2}+m^{2}\right) \varphi=0$ "Klein-Gordon"eq.
solution: $\varphi(\vec{x}, f)=e^{i(\omega t-\vec{k} \cdot \vec{x})}$
with $\omega=\vec{k}^{2}+m^{2} \quad(\hbar=1)$ "energy - momentum relation"
Using path integral, we compute

$$
\begin{align*}
& \text { ing path integral, we compute } \\
& \begin{aligned}
Z[\eta] & =\int D \varphi e^{i \int d^{4} x\left(\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]+J \varphi\right)} \\
& =\int D \varphi e^{i \int d^{4} x\left[-\frac{1}{2} \varphi\left(\partial^{2}+m^{2}\right) \varphi+\partial \varphi\right]}
\end{aligned} \tag{x}
\end{align*}
$$

recall:

$$
\int d^{N} q e^{\left(\frac{i}{2}\right) q^{\top} A q+i g \cdot q}
$$

$q=\left(q_{1}, \ldots, q_{N}\right) \quad N$-vector

$$
\begin{aligned}
& q=\left(q_{1}, \cdots, q_{N}\right) \\
& =\left(\frac{\left(\frac{2 i)^{N}}{\operatorname{det} A}\right)^{\frac{1}{2}} e^{-\left(\frac{i}{2}\right) J^{\top} A^{-1} y} \quad \text { (homework) }}{} .\right.
\end{aligned}
$$

role of A in (*) is $-\left(\partial^{2}+m^{2}\right)$
"inverse" is computed by solving

$$
\begin{aligned}
& -\left(\partial^{2}+m^{2}\right) D(x-y)=\delta^{(4)}(x-y) \quad(x x) \\
\rightarrow & Z[y]=\underset{\substack{\text { consort. }}}{C} e^{-\frac{i}{2} \int d^{4} x d^{4} y \partial(x) D(x-y) J(y)}
\end{aligned}
$$

$$
=: C e^{i \omega[7]}
$$

Setting $C=Z[J=0]$ gives

$$
z[7]=z[0] e^{i \omega[\xi]}
$$

For the integral in (*) to converge, let $m^{2} \longmapsto m^{2}-i \varepsilon$
\rightarrow obtain term $e^{-\varepsilon \int d^{4} x \varphi^{2}}, \varepsilon \ll 1$
Let us solve $(* *)$ by going to momentum space:

$$
\delta^{(4)}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k \cdot(x-y)}
$$

\rightarrow solution: $D(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k(x-y)}}{k^{2}-m^{2}+i \varepsilon}$
To evaluate $D(x)$, we first integrate over K^{0} by contour integration:

$$
\begin{aligned}
D(x) & =(2 \pi)^{-4} \int d^{4} k \frac{\exp (i k \cdot x)}{k^{2}+m^{2}-i \varepsilon} \\
& =(2 \pi)^{-4} \int d^{3} k \int d k_{0} \frac{\exp \left(i\left(k_{0} x_{0}-\vec{k} \cdot \vec{x}\right)\right)}{k_{0}^{2}-\vec{k}^{2}-m^{2}+i \varepsilon}
\end{aligned}
$$

\rightarrow has poles at

$$
\begin{aligned}
K_{0} & = \pm \sqrt{\underbrace{\bar{k}^{2}+m^{2}-i \varepsilon}, \omega_{k}^{2}} \quad,=\sqrt{\vec{k}^{2}+m^{2}} \\
& = \pm \omega_{k} \mp \frac{i \varepsilon}{2 \omega_{k}}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

\rightarrow is in lower/upper half plane

Close contour in lower/upper half-plane for $x_{0} \longrightarrow-\infty / x_{0} \longrightarrow+\infty$

Thus

$$
\begin{aligned}
D(x)=-i \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}} & {\left[e^{-i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)} \theta\left(x^{0}\right)\right.} \\
& \left.+e^{i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)} \theta\left(-x^{0}\right)\right]
\end{aligned}
$$

$D(x)$ is known co the "propagator"
\rightarrow it describes the amplitude for a disturbance in the field to travel from origin to x.
Causality:
One can show:

- $x=(t, 0), t>0$ (within light-cone)
$D(x) \underset{t \rightarrow \infty}{\sim} e^{-i m t}$ "oscillatory"
- $x=(0, \vec{x})$ (outside light-cone) $D(x) \underset{r \rightarrow \infty}{\sim} e^{-m r}$
amplitude can "leak" outside of light-cone over distance $r \sim \frac{1}{m}$
§1.4 From Field to Particle to Force

1) From field to particle

Recall

$$
W[J]=-\frac{1}{2} \int d^{4} x \int d^{4} y J(x) D(x-y) \gamma(y)
$$

Use Fourier transform

$$
\begin{gathered}
J(k):=\int d^{4} x e^{-i k \cdot x} J(x) \\
\rightarrow W[J]=-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} J(k)^{*} \frac{1}{k^{2}-m^{2}+i \xi} J(k)
\end{gathered}
$$

(note: $J(k)^{*}=J(-k)$ for real $J(x)$)
Consider now $J(x)=J_{1}(x)+J_{2}(x)$
with J_{1} and J_{2} localized in two different regions of spacetime:

Let us focus on the term

$$
W[J]=\ldots \ldots-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} J_{2}^{*}(k) \frac{1}{k^{2}-m^{2}+i \varepsilon} J_{1}(k) \ldots
$$

\rightarrow significant contribution iff

- $J_{1}(k)$ and $J_{2}(K)$ overlap in a large region
- $k^{2}-m^{2} \sim 0$ in that region
\rightarrow energy-momentum relation of particle of mass m traveling from region $1^{\text {1 }}$ to region 2

2) From particle to force Imagine now $J(x)=J_{1}(x)+J_{2}(x)$

$$
\text { with } f_{a}(x)=\delta^{(3)}\left(x-x_{a}\right)
$$

(two spikes localized at \vec{x}_{1} and \vec{x}_{2}, time-indep.)

$$
\rightarrow W[y]=-\int d x^{0} d y^{0} \int \frac{d k^{0}}{2 \pi} e^{i k^{0}\left(x^{0}-y^{0}\right)}
$$

we negnect
the self-interactions $x \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \vec{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)}}{k^{2}-m^{2}+i \varepsilon}$ J_{1}^{2} and J_{2}^{2} here

$$
\begin{aligned}
& =\left(\int d x^{6}\right) \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \vec{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)}}{\vec{k}^{2}+m^{2}} \\
\text { recall } Z & =C e^{i \omega[\gamma]} \\
& =\langle O| e^{-i H T}|0\rangle_{\gamma} \\
& =e^{-i E_{r} T} \\
\rightarrow i W[\gamma] & =i E_{r} T
\end{aligned}
$$

identify $\left(\int d x^{\circ}\right)$ with T and

$$
E_{\gamma}=-\int \frac{d^{3} k}{(2 \overline{4})^{3}} \frac{e^{i \vec{k} \cdot\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right)}}{\vec{k}^{2}+m^{2}}
$$

\rightarrow ground state energy has been lowered!
\rightarrow attractive force between the two sources!

$$
r=\left|\vec{x}_{1}-\vec{x}_{2}\right|
$$

We now compute

$$
\begin{aligned}
& E_{r}=-\frac{1}{(2 \pi)^{2}} \int_{0}^{\text {now compute }} d k \frac{k^{2}}{k^{2}+m^{2}} \int_{0}^{\pi} d \theta \sin \theta e^{i k r \cos \theta} \\
&=\left(e^{i k r}-e^{-i k r}\right) / i k r
\end{aligned}
$$

$$
=\frac{i}{(2 \pi)^{2}} \int_{-\infty}^{\infty} d k \frac{k}{k^{2}+m^{2}} \frac{e^{i k r}}{r}
$$

View as complex contour integral
\rightarrow has poles at $k= \pm i m$
close contour in upper half-plane
\rightarrow pick residue at $k=$ in:

$$
E_{r}=-\frac{1}{4 \pi r} e^{-m r}
$$

